Отличие экспертных систем от других систем

Отличия экспертных систем от прочих прикладных программ заключаются в следующем.

  •     Экспертная система моделирует не столько физическую природу определенной проблемной области, сколько механизм мышления человека применительно к решению задач в этой проблемной области. Это существенно отличает экспертные системы от систем математического моделирования или компьютерной анимации. Нельзя, конечно, сказать, что программа полностью воспроизводит психологическую модель специалиста в этой предметной области (эксперта), но важно, что основное внимание все-таки уделяется воспроизведению компьютерными средствами методики решения проблем, которая применяется экспертом, т.е. выполнению некоторой части задач так же (или даже лучше), как это делает эксперт.
  •     Экспертная система, помимо выполнения вычислительных операций, формирует определенные соображения и выводы, основываясь на тех знаниях, которыми она располагает. Знания в системе представлены, как правило, на некотором специальном языке и хранятся отдельно от собственно программного кода, который и формирует выводы и соображения. Этот компонент программы принято называть базой знаний.
  •     При решении задач основными являются эвристические и приближенные методы, которые, в отличие от алгоритмических, не всегда гарантируют успех. Эвристика, по существу, является правилом влияния, которое в машинном виде представляет некоторое знание, приобретенное человеком по мере накопления практического опыта решения аналогичных проблем. Такие методы являются приблизительными в том смысле, что, во-первых, они не требуют исчерпывающей исходной информации, и, во-вторых, существует определенная степень уверенности (или неуверенности) в том, что предлагаемое решение является верным.

Экспертные системы отличаются и от других видов программ из области искусственного интеллекта по следующим признакам.

  1.     Экспертные системы имеют дело с предметами реального мира, операции с которыми обычно требуют наличия значительного опыта, накопленного человеком. Множество программ из области искусственного интеллекта являются сугубо исследовательскими, и основное внимание в них уделяется абстрактным математическим проблемам или упрощенным вариантам реальных проблем (иногда их называют «игрушечными» проблемами), а целью выполнения такой программы является «повышение уровня интуиции» или отработка методики. Экспертные системы имеют ярко выраженную практическую направленность в научной или коммерческой области.
  2.     Одной из основных характеристик экспертной системы является ее производительность, т.е. скорость получения результата и его достоверность (надежность). Исследовательские программы искусственного интеллекта могут и не быть очень быстрыми, можно примириться и с существованием в них отказов в отдельных ситуациях, поскольку, в конце концов, – это инструмент исследования, а не программный продукт. А вот экспертная система должна за приемлемое время найти решение, которое было бы не хуже, чем то, которое может предложить специалист в этой предметной области.
  3.    Экспертная система должна обладать способностью объяснить, почему предложено именно такое решение, и доказать его обоснованность. Пользователь должен получить всю информацию, необходимую ему для того, чтобы быть уверенным, что решение принято «не с потолка». В отличие от этого, исследовательские программы «общаются» только со своим создателем, который и так (скорее всего) знает, на чем основывается ее результат. Экспертная система проектируется в расчете на взаимодействие с разными пользователями, для которых ее работа должна быть, по возможности, прозрачной.

Отличие от систем принятия решений.

Сходство технологий, используемых в ЭС и системах поддержки принятия решений (СППР), состоит в том, что обе они обеспечивают высокий уровень поддержки принятия решений. Но в то же время имеются и существенные различия.

Во-первых, решение проблемы в СППР отражает уровень ее понимания пользователем и его возможности получить и осмыслить решение (рассчитаны на пользователя-эксперта), а ЭС предлагает пользователю принять решение, превосходящее его возможности (рассчитаны на пользователя-неэксперта).

Во-вторых, ЭС могут пояснять свои рассуждения в процессе получения решения, причем часто эти пояснения оказываются более важными для пользователя, чем само решение.

В-третьих, ЭС менее гибки, так как состав базы знаний и принятый механизм логического вывода накладывают определенные ограничения на круг решаемых задач.

В-четвертых, разработка ЭС с учетом неполноты и нечеткости знаний требует очень больших затрат высоко интеллектуального труда и времени.

Отличие экспертных систем от традиционных программ.

Ещё один способ определить ЭС – это сравнить их с обычными программами. Главное различие состоит в том, что ЭС манипулируют знаниями, тогда как обычные программы манипулируют данными. Специалисты в области ИИ имеют несколько более узкое и более сложное представление о том, что такое ЭС. Под экспертной системой понимается программа для ЭВМ, обладающая: компетентностью, символьным рассуждением, глубиной и самосознанием.

Компетентность. Экспертная система должна демонстрировать компетентность, т.е. достигать в конкретной предметной области того же уровня профессионализма, что и эксперты-люди. Настоящие эксперты не только находят хорошие решения, но часто находят их очень быстро, тогда как новичкам для нахождения тех же решений, как правило, требуется намного больше времени. Следовательно, ЭС должна быть умелой - она должна применять знания для получения решений эффективно и быстро, используя приемы и ухищрения, какие применяют эксперты-люди, чтобы избежать громоздких или ненужных вычислений. Для того чтобы по-настоящему подражать поведению эксперта-человека, ЭС должна обладать робастностью. Это подразумевает не только глубокое, но и достаточно широкое понимание предмета. А этого можно достичь, используя общие знания и методы нахождения решений проблем, чтобы уметь рассуждать исходя из фундаментальных принципов в случае некорректных данных или неполных наборов правил. Это один из наименее разработанных методов в современных ЭС. Но именно им успешно пользуются эксперты-люди.

Символьные рассуждения. Эксперты, решая какие-то задачи (особенно такого типа, для решения которых применяются ЭС), обходятся без решения систем уравнений или других трудоемких математических вычислений. Вместо этого они с помощью символов представляют понятия предметной области и применяют различные стратегии и эвристики в процессе манипулирования этими понятиями. В ЭС знания тоже представляются в символьном виде, т.е. наборами символов, соответствующих понятиям предметной области.

Глубина. Экспертная система должна иметь глубокие знания; это значит, что она способна работать эффективно в узкой предметной области, содержащей трудные, нетривиальные задачи. Поэтому правила в ЭС с необходимостью должны быть сложными либо в смысле сложности каждого правила, либо в смысле их обилия. Экспертные системы, как правило, работают с предметными областями реального мира, а не с тем, что специалисты в области ИИ называют игрушечными предметными областями. В предметной области реального мира тот, кто решает задачу, применяет фактическую информацию к практической проблеме и находит решения, которые являются ценными с точки зрения некоторого критерия, определяющего соотношение стоимости и эффективности. В игрушечной предметной области либо задача подвергается чрезвычайному упрощению, либо производится нереалистическая адаптация некоторой сложной проблемы реального мира. Тот, кто решает такую проблему, обрабатывает искусственную информацию, которая в целях облегчения решения упрощена и порождает решения, имеющие чисто теоретический интерес. В тех случаях, когда по отношению к сложной задаче или данным о ней сделаны существенные упрощения, полученное решение может оказаться неприменимым в масштабах, которые характерны для реальной проблемы. Рекомендации, методы представления знаний, организация знаний, необходимые для применения методов решении задач к этим знаниям, часто связаны с объемом и сложностью пространства поиска, т.е. множества возможных промежуточных и окончательных решений задачи. Если проблема сверх упрощена или нереалистична, то размерность пространства поиска будет, скорее всего, резко уменьшена, и не возникнет проблем с быстродействием и эффективностью, столь характерных для реальных задач.

Самосознание. Экспертные системы имеют знания, позволяющие им рассуждать об их собственных действиях, и структуру, упрощающую такие рассуждения. Например, если ЭС основана на правилах, то ей легко просмотреть цепочки выводов, которые она порождает, чтобы прийти к решению задачи. Если заданы ещё и специальные правила, из которых ясно, что можно сделать с этими цепочками выводов, то можно использовать эти знания для проверки точности, устойчивости и правдоподобия решений задачи и даже построить доводы, оправдывающие или объясняющие процесс рассуждения. Это знание системы о том, как она рассуждает, называется метазнаниями, что означает всего лишь знания о знаниях. У большинства ныне существующих ЭС есть так называемый механизм объяснения. Это знания, необходимые для объяснения того, каким образом система пришла к данным решениям. Большинство этих объяснений включают демонстрацию цепочек выводов и доводов, объясняющих, на каком основании было применено каждое правило в цепочке. Возможность проверять собственные процессы рассуждения и объяснять свои действия – это одно из самых новаторских и важных свойств ЭС.

"Самосознание” так важно для ЭС потому, что:

  •     пользователи начинают больше доверять результатам системы;
  •     ускоряется развитие системы, так как систему легче отлаживать;
  •     предположения, положенные в основу работы системы, становятся явными;
  •     легче предсказывать и выявлять влияние изменений на работу системы.

Экспертные системы делают ошибки. Существует еще одно очень важное отличие ЭС от традиционных программ. Тогда как традиционные программы разрабатываются таким образом, чтобы каждый раз порождать правильный результат, ЭС разработаны с тем, чтобы вести себя как эксперты, которые, как правило, дают правильные ответы, но иногда способны ошибаться.

Традиционные программы для решения сложных задач, напоминающих те, которые подходят для ЭС, тоже могут делать ошибки. Но их ошибки чрезвычайно трудно исправлять, поскольку стратегии, эвристики и принципы, лежащие в основе этих программ, явно не сформулированы в их тексте. Следовательно, эти ошибки нелегко определить и исправить. Подобно своим двойникам-людям ЭС могут делать ошибки. Но в отличие от обычных программ, они имеют потенциальную способность учиться на своих ошибках. С помощью компетентных пользователей можно заставить экспертные системы совершенствовать свое умение решать задачи в ходе практической работы.